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A numerical method of solving spatial problems involving homogeneous isotropic bodies of revolution which obey the equations 
of flow theo:y and are under a non-axially symmetric load is developed. The method makes use of an algorithm in which a step 
is made in the load mad iterations are carried out on this step. The Ritz method is used to solve the elastic problem at each 
iteration. In this method, an expansion in a system of trigonometric functions along a peripheral direction and with respect to 
the coordinates in the meridian plane is used, that is, a two-dimensional finite-element approximation. It is proved that the iterative 
process converges in the case of an isotropically hardening body which obeys the associated flow law subject to the Mises plasticity 
condition. Sufficient conditions for the Ritz solution to converge, on iteration, to the exact solution are also obtained both in 
the case of external aad internal problems. The method is used to calculate a preloaded elastoplastic haft-space with a blind 
hole as the load applied to the lateral surface of the hole is removed. The problem simulates the process of boring a hole in a 
body which is used to determine the residual messes in it. A comparison is made between the results obtained and the results 
of the solution of the ~ame problem in an elastic formulation which is used in practice at the present time to determine residual 
stresses. © 1997 Elsevier Science Ltd. All rights reserved. 

1. T H E  S Y S T E M  O F  EQUATIONS AND B O U N D A R Y  C O N D I T I O N S  

Consider an elasltoplastic body of revolution, which occupies a domain f~ in a three-dimensional 
Euclidean space R'  and suppose that ~1 = r, ~2 = ~p, ~3 = z are the cylindrical coordinates of a point x 
of the domain f~ ~md that t is a loading parameter. 

The body is subject to a quasistatic load by the volume forces X(x, t) which are distributed in f~, the 
surface forces q0~ t) which are distributed over the boundary F of the domain f~ and the specified 
displacements U(x, t). 

We will write the equilibrium and Cauchy equations as 

Vj (~  ji + X i m O, ~/j = l ( V ; u j  + Viu i) (1.1) 

where a ji and X i are the components of the stress tensor and of the volume force, and ui and ~ are the 
components of the displacement and of the strain tensor. 

We now consider an elastoplastic body which obeys the constitutive equations of flow theory. The 
stressed state of the body satisfies the condition for plasticity with isotropic hardening 

f(~0)-o r ~< 0 (1.2) 

where f is a yield i~nction, which is a homogeneous function of the stresses of degree i and ar is the 
yield stress. 

The gradient law for the rate of plastic deformation 

~ = ~(/"PO; q)O =/)f //)(so, ~' >~ 0 (1.3) 

is sa t i s f ied .  
The body is subject to strain hardening which can be specified by the following equation 

Gy - ij" p = II(I Eij / f l y  ---- h~ffiJ(pi j / Gy  (1.4) 
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where h(oy) is the hardening coefficient (h = ~/~.p) in the case of a uniaxial stressed state). 
Finally, the differential form of Hooke's law is 

• p (~J = Dqkt ( f'kt - f'~t ) = Diy*t ( ~'kt - ~aP(i ) (1.5)  

where D #e are the components of the elasticity constants tensor. 
Equations (1.2)-(1.5) form the system of constitutive equations of flow theory. The stresses and strains 

are functions of the point on the body x and the loading parameter t. 
We differentiate relation (1.2), with the equafity sign, with respect to t, and take account of (1.3)-(1.5). 

We then obtain 

Oob. q 
~.= q~ijO O +h ' f ( o i J ) = o r n o i J i , . q  >t0 (1.6) 

O, f ( o i J ) < o r  uoiJi~ij <0 

where 0 ij = / ~ q ~ .  
Equations (1.4) and (1.5), in the case when eo{x, t) is specified at each point x, form a system of ordinary 

differential equations in Oy and c~ j. The final form of Eq. (1.5) will be 

(~ij = AijktEkl; A ijkl = D ijkl - H ijkl (1.7) 

f oijokl H ijkl = ~mnl.~ mn +h ' f = o r  ¢'~oiJ~iJ ~ 0 

O, f < Oy L.3oiJEij < 0  

Equations (1.1), (1.4) and (1.7) form the complete system of equations for the problem under 
consideration. 

It remains to state the initial and boundary conditions of the problem. 
When t = 0, we have o # = o~, o r  = o~., where off, ¢0 r are specified functions of x. It may be assumed, 

without loss of generality, that ui = 0 when t = 0. 
In the part re of the boundary F of the domain ~ where the surface forces q(x, t) are specified, the 

~ [ .  . . 

boundary condiUons are written m the form 

oJivj = qi (1.8) 

where vi are the components of the normal to the boundary surface and q/are the components of the 
surface force. 

The displacements U(x, t) are specified on the other part of the boundary F,, and the boundary 
conditions have the form 

ui = Ui (1.9) 

where Ui are the components of the specified displacements. 
On the axis of rotation (r = 0), it is necessary to specify conditions which express the situation that 

one and the same point corresponds to different values of the angle ~p 

u r = A(z)cosq~+ B(z)sinq~ 

% =-A(z)sin~o+B(z)cos~o, u z = C(z) 

(1.10) 

where Ur, u~, uz are the physical components of the displacement vector in a cylindrical system of 
coordinates, that is, u, = ub u , =  u~Jr, Uz = u3. 

The body can occupy an unbounded domain. We shall assume that the volume and surface forces 
are applied in a bounded part of the body. Then, in order for the solution of the problem to be unique, 
the following conditions can be imposed at infinity [1] 

2 + u2z )~ = O(R-i ), ~Zi I ~xj = o(R -l); R = (r 2 + z 2)3~ (1.11) 2 + 
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where, in the second formula, the components of the displacements ~ and the derivatives are considered 
in the Cartesian system of coordinates x~ = x, x2 = y, x3 = z. 

Finally, it is necessary to impose the periodicity conditions 

u i ( r , ~ + 2 x ,  Z ) = u i ( r , ~ , Z )  (1.12) 

2. THE STEPWISE METHOD FOR SOLVING 
THE SYSTEM OF EQUATIONS 

We subdivide the range of variation of the loading parameter t into N parts and denote t at the nodes 
by tp (p = 0, 1~. . . ,  N). The volume and surface forces and the specified displacements when t --- t. are 
denoted by X~, q~., U, e, respectively. At each step p = 1 , . . . ,  N of the change in the above-mentiOned 
quantities, we set up the following system of equations 

"" A ijkl ^~P (2.1) vjoJ" + = o, o 'j = + p-,,-,,-kt 

= ½ (Au ) + vj (Auf)) 

Here 

AO~ = DOkl " p -- H qld 

ijst p p mnkl 
D 9s/OmD 

"" p mnst p " p ' Hg*I = ~ %,,,,D tp.,t + h f = Oy 

[ O, f < O r  

and the superscript p on a quantity denotes that it has been calculated at the corresponding value of 
the loading parameter. 

To system (2.1), we add the boundary conditions 

~. Auf Ir, = AUf  (2.2) aOv j Irq = % ,  

We treat the system of equations (2.1) with boundary conditions (2.2), the conditions on the axis, 
the conditions at infinity and the periodicity conditions as a system in Au~. SinceA 01d is independent of 
eij, which has been assumed in (2.1), this system can be considered as a system of equations for a certain 
inhomogeneous ~aisotropic elastic body with additional volume and surface forces. 

After the system of equations has been solved, the displacement is represented in the form 

t - t p _  1 
ui = uf  -I + - -  Auf  (2.3) 

tp  - t p _  I 

The strains ~ are determined using the displacements from the Cauchy equations, and these strains 
are then substituted into the constitutive equations (1.4) and (1.7), from where o.~ = o~(t.) and o r  ~ = 
oy(tp) are obtaineA~ when the initial conditions oiJ(t~l) -- o~1  and o~(t~l) = o ~  1 are satisfied. 

3. AN ITERATIVE METHOD OF SOLVING THE SYSTEM OF 
EQUATIONS ON A STEP IN THE LOADING 

We will solve the system of equations (2.1) with boundary conditions (2.2) using an iterative method 
which is analogous to the method of supplementary stresses in the deformation theory of plasticity [2]. 
The second equation of (2.1) is written in the form 

0 u (3.1) = ( ~ p - I  ~ k ~ ( n - l )  

A(g(iJn) - -  MOld A°tn) it = 0 - -  ,,p_l,.~k/ , AO[(O ) 
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where n = 1, 2 , . . .  is the number of iterations on thep th  step of the change in the loading parameter. 
Then, on the nth iteration, the system of equations and the boundary conditions from Section 2 are 
written in the form 

Vj (D#UA~) )+  V io~ t # i _ - Vj( t~z<._ ,>)+ X~ = 0 

A¢(n) 1 ¢ = (Vi(Au~"))+Vj(Au~"))) (3.2) 

' J' 
DJikl~(~)Vj {rq = qp - Gp-lVj  {r e {r e 

~ ( , , ) ,  = AU/p i IF. 

and represent the system of equations and the boundary conditions for an elastic body with the same 
elasticity constants ]D qkl as the initial body but with changed volume and surface forces. 

4. ON THE C O N V E R G E N C E  OF THE I T E R A T I V E  M E T H O D  

The proposed iterative method belongs to the II'yushin class of methods of elastic solutions, the proof of 
the convergence of which is given in [3] in the case of the deformation theory of plasticity. Sufficient conditions 
for the convergence of the iterative method for the general case of a non-elastic material have been given in [4]. 
Starting from these conditions, for iterations (3.2) to converge to the solution of system (2.1)-(2.2) it is sufficient 
that 

YiD#'t~eijett ~ Ai/~¢ijetl <~ Y2DOt~eijetl 

for any symmetric tensor • where 

(4.1) 

¥1>0, Y2 <2 (4.2) 

In the case of an isotropic body and a Mises flow function f(o ~) = ,J(3/2)(fl s#) la (s# are the components of the 
stress deviator) we shall determine for which values of the elastoplastic constants conditions (4.1) and (4.2) are 
satisfied. 

From (1.7), we have 

• 9it 2 siJs Id Aijkl = Xgijgtl +it(g~kgi! +gilgik)_ h+3g f2 

where Z and It are Lam6 parameters andg# are the components of the metric tensor. 
We expand the expressions in (4.1) 

Dijklgijekl ---- ~,(g~ )2 4- 2p.giJgij 

.. 2 ($(/eij)2 
A"JU~q~kl = ~.(el) 2 + 21~%q _ ,, ~-.,9~It 

F 
Analysis of the above expressions gives 

¥1=hl(h+3it),  y2=l  

and conditions (4.2) are satisfied when h > 0, that is, the material is hardening. 

5. USE OF T H E  R I T Z  M E T H O D  TO SOLVE T H E  SYSTEM OF 
E Q U A T I O N S  ON AN I T E R A T I O N  

In order to write down the Lagrange variational principle which is equivalent to system (3.2), we 
subtract the equilibrium equation and the static boundary conditions when t -- 0 from the first and third 
equations of (3.2) respectively. This procedure is necessary in order that integrals along a boundary at 
infinity should not occur in the case of an infinite domain and non-zero stresses at infinity in the 
Lagrangian functional. The Lagrangian functional, corresponding to 0.2),  is obtained by means of some 
straightforward operations 
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I r r , . 0  - o g  - 
- -  j t . ,  ~.a~.ij L.ar..kl ~ a 6  7v j ~ V p _  I J = 2 n  n 

-1 (X~, - X~)Au}"'d~- I (q/t, - q~)Au}"'dF (5.1) 
n r~ 

where o0 q, X0', qd are the components of the stresses and the volume and surface forces when t = 0. 
The Ritz method is used to minimize (5.1). 
We now introduce the vector notation which is conventionally used in the finite-element method 

dr=[ur,u•,uz], qr=[qr,q,,qz], Xr=[X,,X,,Xz] 

~r = [£r,£9,Ez,y,v,y,z,y~ z ], o.7" = [Or,O~,Oz,X,g,Z, z,x~z ] 

AO~ T = [AOtrr, AO~¢~p, AOtu, AO~r¢, AO~rz, A~¢z ] 

where the physical components of the tensors in a cylindrical system of coordinates are enclosed in 
square brackets. 

We will approximate the displacement vector in the form 

d(r, qLz)= ~ (at(r,z)coskcp+bt(r,z)sinkq~) (5.2) 
k=0 

where a t and b k are vector functions with components with respect to r, cp and z. 
It should be noted that, in order for approximation (5.2) to be applicable, it is necessary that the 

surfaces Fu and F,~ should represent surfaces of revolution of parts of the boundary of the meridian 
t, cross-section about the z axis. In order to approximate the coefficients of a and b ~, we subdivide a certain 

bounded part of the meridian cross-section into finite elements while the remaining part is subdivided 
into infinite elements [5]. Then 

rd n l  

at = Z Gia~; b t = Y. Gib/t (5.3) 
i=1 i=1 

where Gi is a function of the form of the ith mesh point of the meridian cross-section in the finite and 
infinite elements, a~ and b~ are the values of the expansion coefficients at the ith mesh point and m is 
the number of mesh points in the meridian cross-section. 

When a radial hafinite element is used [5], which is formed by the side of an adjoining finite element 
and two rays whie]h pass through the origin of coordinates, the shape functions are represented as 

m 

where G i is the shape function of the ith mesh point in a finite element which is adjacent tO an infinite 
element, calculated at the point of intersection of the common side of the elements with a ray which 
joins the origin of coordinates and the point of the infinite element under consideration: R and R0 are 
the distances fr_om the origin of coordinates to the point of the infinite element and the point at which 
the functions G i is calculated respectively and I is the order of the asymptotic form of the displacement 
at infinity with respect to R. 

Expressions (5.2) and (5.3) can be written in the vector-matrix form which is accepted in the finite- 
element method 

d : G6 (5.4) 

k k where 8 is the vector formed by the components ai, bi (k = 0, . . . ,  n; i : 1 . . . . .  m) and G is the matrix 
of the form functions. 

The strains are also expressed in terms of the vector 8 

, = B s  (5.5)  

where B is the matrix of the gradients. 
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The form function and gradient matrices consist of the submatrices Gk and Bk (k = 0 , . . . ,  n) 
corresponding to different harmonics. The elements of the matrices Gk and Bk are represented by the 
products of certain functions of r and z with cos k~p or sin k~p. 

Using the notation which has been adopted here, Hooke's law can be written in the form 

o" = De (5.6) 

where D is a synunetric 6 x 6 matrix, the coefficients of which are the physical components of the elasticity 
constants tensor in a cylindrical system of coordinates r, q~ and z. 

The Ritz method which has been described reduces the problem of minimizing functional (5.1) to 
solving the following system of linear algebraic equations in the increments of the mesh point coefficients 
8 

(~BrDBd~tA~(n) + ~ BT (er P-I -er° - 

-~ Gr(Xp - X0)df~- ~Gr(qp - qo)dl" = 0 
F 

(5.7) 

By virtue of the orthogonality of the system of trigonometric functions in the interval 0 ~< 9 ~ 21t, 
system (5.7) decomposes into separate systems of equations for each harmonic. However, unlike the 
case of an elastic body, on the right-hand sides of these systems there are not only coefficients corres- 
ponding to the expansion of the external load in a system of trigonometric functions but, also, coefficients 
corresponding to the expansion Of the stresses. Hence, even if the load has a finite number of harmonics, 
the required displacement will have an infinite number of harmonics in the general case. 

We note that, in solving system (5.7), it is necessary to take account of the boundary conditions in 
the displacements and the conditions on the z axis which reduce to simple conditions for the increments 
in the components of the vectors a k and h ~. 

We will now consider the case when one and the same system of functions of the Ritz method is used 
in each iteration. Then, (5.7) is rewritten in the form 

where O (n) is the residual of system (5.7) after the nth iteration, which is defined by the expression 

0 ~°' = IBr(op_j  - o r 0 ) m -  ~Gr(Xp - X0)d~-  ~Gr(qp - q0)dF (5.9) 
t2 ~2 t2 

~b ¢'~ = IBr(Aotln_l)-Ao~tn))dfL n = 1,2 .... 
f~ 

Representation (5.8), (5.9) is convenient due to the fact that, in order to calculate the residual, it is 
only necessary to carry out an integration over that part of f~ which is in a plastic state. 

Additional advantages associated with the use of one and the same system of functions of the Ritz 
method include the constancy of the stiffness matrix of the system of equations at each iteration. This 
enables us to re-order and decompose the matrix prior to the iterative process and solve only triangular 
systems at each iteration [6]. 

6. ON THE CONVERGENCE OF THE RITZ SOLUTION TO 
THE EXACT SOLUTION IN AN ITERATION 

Let A be the diameter of the two-dimensional domain, which is subdivided into discrete areas by the finite 
elements, and let[~ be the maximum diameter of the finite elements. As previously, the parameter n denotes the 
number of harmonics in the expansion of displacements (5.2). Suppose d is the ~_act solution of the system of 
equations in an iteration and that d r is the Ritz solution. 

Theorem. Suppose that the following conditions are satisfied 
1. d is a doubly continuously differentiable function with respect to r, cp and z; 
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2. ~nen R ~ oo, va; have d~ = O(R-', & / ~  = O(R"2), ~ d i / ~ t  : O(R-3), where db d2 and da are the components 
ofd  in a Cartesian ~,Tstem of coordinates xl, x2,x3, R is the ~stance to the coordinate ori#n and i,j, k : 1, 2, 3; 

3. in the meridia~L cross-section, each finite element with a diameter ¥ contains a circle of diameter ~ ,  where x 
is a positive number specified in advance; 

4. the boundary of the domain in the meridian cross-section which is discretized by the finite elements is piecewise 
once smooth; 

5. R'mJ A > B, wh~ere Rmm is the distance from the orion of coordinates to the boundary of the finite element 
domain (see condition 4 of the theorem) and B is a positive number specified in advance. 

The inequality 

I i d - d  r I I~l ld-d~ II (6.1) 

then holds, where [ [ • I [ is the energy norm and dl is a certain vector function which satisfied the equality 

lim lira lim IId-dl  II--0 (6.2) 

7. S O L U T I O N  OF P R O B L E M  ON T H E  D E F O R M A T I O N  O F  AN 
E L A S T O P L A S T I C  H A L F - S P A C E  W I T H  A H O L E  O R  A B O R E  

We now consider the problem of the deformation of an elastoplastic isotropic half-space with a blind hole when 
the surface load applied to the lateral surface of the hole is removed. This problem simulates the process in which 
a hole is drilled for determining the residual stresses at a point on the body surface [7]. 

We construct a C~trtesian system of coordinates with the origin at the specified point, with its x andy axes lying 
in the boundary plane of the half-space and the z axis perpendicular to the first two axes (Fig. 1). At the initial 
instant of time, we specify a homogeneous stressed state in the body with components in the cylindrical system of 
coordinates r, q) and z 

Or = OI cos2 ¢P +O2 sin2 q~, O 9 = OI sin2 9 +o2 cos2 9 (7.1) 

x,~ = 02 - o f  sin29, O z =x ,  z = x ~  = 0  
2 

where Ol and o2 are the principal components of the residual stresses, the principal axes of which are directed 
along the x and y axes. 

We will now consider the boundary conditions of the problem. It is assumed that the surface load on the lateral 
surface falls from the initial value corresponding to the stressed state (7.1) to zero such that, at a certain intermediate 
instant of time, it has the following components 

qr =q9 =qz = 0 ;  - Z  2 ~ z < O  

qr = -01  cos2 q) - 0 2  sin2 9,  

q~ = O 1 s i n g c o s g - 0 2  singcosq) 

qz=O; - z  O ~ z < - z 2  

(7.2) 

f 1 

-z, 

Fig. 1. 

Y 
-z 

s 

2 J # 

Fi& 2. 

, j  
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t f . l / j  1 ,3 q i-]~ 0 

Fig. 3. 

where at the initial instant z2 = 0, and at the final instant z2 -- Zo. 
The bottom of the cavity and the remaining boundaries of the body are stress-free. When the hole is bored, the 

body is deformed elastically at infinity. Hence, the disl~lacement at infinity has the same asymptotic form as in the 
elastic problem which, as has been shown in [8], is R -~, where R is the distance from the origin of  coordinates. 

On the axis of revolution, uz is independent of q~ and, as a result of the symmetl~ of the problem with respect 
to the coordinate planesxOz andyOz, u, ffi u~ = 0. 

In the case of an annular bore (Fig. 2), the load (7.2) is applied to the external part of the lateral surface of the 
bore while a load which is the opposite of (7.2) is applied to its internal part. 

For the calculations, we consider a material with an elastic modulus E ffi 7 x 104 MPa, a yield point o r ffi 280 
MPa, a modulus of strain hardening h = 70 MPa and a Poisson's ratio v ffi 0.3. The initial stresses have the principal 
components ol = 240 MPa and o2 = 0. 

The problems are solved by the stepwise-iterative method described in Sections 2, 3 and 5. The required 
displacements are approximated by formula (5.2) in which only even harmonics occur by virtue of the symmetry 
of the problem with respect to the xOz andyOz coordinate planes. 

In the case of a half-space with a hole, the depth of this hole is equal to its radius. The part of the meridian 
cross-section which is discretized by the finite elements has a radius rl = 5r0 and a h e i g h t  z 1 --  5r0, where r0 is the 
radius of the hole. This domain is divided up into three zones (Fig. 1) and each zone is divided up into finite elements. 
The remaining part of the meridian cross-section (zone 4) is divided up into infinite elements. The whole of the 
meridian cross-section contains 300 finite elements and 40 infinite elements. The finite element mesh is compressed 
in the direction towards the hole. The load applied to the lateral surface of the hole is subdivided into five different 
steps with respect to the parameter z2. The same harmonics are retained as in the case of the hole. 

"lb check the accuracy of the solutions obtained, calculations were carried out using different values of the 
parameters in the numerical model. The results of these additional calculations differed from the main calculations 
by a few percent. 

Graphs of the displacements Uz, divided by the radius of the hole, as a function of r on the boundary of a half- 
space with a hole (a) and of the displacements uz, divided by the internal radius of the bore, on the boundary of 
a half-space inside and outside of annular bore (b) are shown in Fig. 3. The elastic and elastoplastic solutions when 
q) ffi 0 are denoted by the numbers 1 and 2 and the same solutions when q~ ffi ~ 2  are denoted by 3 and 4. A 
characteristic feature of the elastoplastic solution is that the displacement Uz on the edge of the hole when q) = 
g/2 is comparable with the displacement uz when q~ ffi 0. It can be seen that the elastic and elastoplastic solutions 
are much closer to each other in the case of an annular bore than in the case of a hole. 

The results show that the determination of residual stresses from the displacements of points of a body in the 
neighbourhood of an aperture can lead'to large errors when it is assumed that the problem is an elastic one. The 
use of an annular bore in this case leads to much smaller errors. 
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